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Abstract
S1 | login, pwd, mail, ssh, ..., mail, web, logout
) ] S2 | login, pwd, mail,web, . .., web, web, web, logout

We present a comparative evaluation of a large number Ss | login, pwd, mail, ssh, . . ., mail, web, web, logout
of anomaly detection techniques on a variety of publicly Sy | login, pwd, web, mail, ssh, . .., web, mail, logout
available as well as artificially generated data sets. Mahy o S5 | login, pwd, login, pwd, login, pwd, ..., logout
these are existing techniques while some are slight vagiant
and/or adaptations of traditional anomaly detection tech- Table 1: Sequences of User Commands
nigues to sequence data. The specific contributions of this
paper are as follows: (i). This evaluation facilitates unde
standing of the relative strengths and weaknesses of -differ T NTaTkovian TeChAGes

ent techniques. Through careful experimentation, we-illus Based | Based
trate that the performance of different techniques is depen | Appication Domains TeCh”‘q““[T;j‘]C[gg‘]"‘““[Fs'ifg]’ Variablg ;ﬁ"“[’ss]e
dent on the nature of sequences, and the nature of anoma [8l[10] | [20][16],
lies in the sequences. No one technique outperforms all oth S [15],(19] 2
ers. For most techniques we also identify some data sets of—Fignt safety ] 23]
which they perform very well, and some on which they per-

form poorly. (ii). We investigate variants that have notiee Table 2: Anomaly Detection Techniques for Symbolic Se-
tried before. For example, we evaluatécanearest neigh-  quUENCces.

bor based technique that performs better than a clustering

based technique that was proposed for sequences. Also, we

propose FSA-z, a variant of an existing Finite State Automa-

ton (FSA) based technique, which performs consistently su-as shown in Table 2. We group such techniques into fol-
perior to the original FSA based technique. (iii). We pro- lowing three categorieskernel based window based and
pose a novel way of generating artificial sequence data setsMarkovian techniques. Kernel based techniques use a sim-
to evaluate anomaly detection techniques. (iv). We charac-ilarity measure to compute similarity between sequences.
terize the nature of normal and anomalous test sequencesfor example, a clustering based technique that nses

and associate the performance of each technique to one omalized longest common subsequeagthe similarity mea-

more of such characteristics. sure [4], has been proposed in aircraft safety domain. Win-
dow based techniques, e.g., STIDE [12], extract fixed length
1 Introduction windows from a sequence and assign an anomaly score to

) ) i ) .. each window. Markovian techniques assign a probabilis-

Sequence data is found in a wide variety of application i anomaly score to each event conditioned on its history,

domains such as intrusion detection, bio-informatics, etc using sequence modeling techniques. Examples of such
Hence anomaly detection for sequence data is an importan{echmques ar€inite State Automat&FSA) [19], Hidden

topic of research. There is extensive work on anomaly de- 14 rkov Model{HMM) [20], and Probabilistic Suffix Trees
tection techniques [1, 11, 14], but most of these techniques(PST) [24].

look for individual objects that are different from normal
objects. These techniques do not take the sequence aspect As is evident from Table 2, most of the existing tech-
of the data into consideration. For example, consider the se niques for sequence anomaly detection have been tried in
of user command sequences shown in Table 1. Clearly theonly one domain with no comparative evaluation. We are
sequencess is anomalous, even though each command in aware of only one work [8] that compared four techniques
the sequence by itself is normal. (namely, STIDE, t-STIDE, which is a variant of STIDE,
Several anomaly detection techniques for symbolic se-HMM based, and RIPPER based) on 6 different data sets,
guences have been proposed in diverse application domainall of which were from system call intrusion detection do-
such as intrusion detection, proteomics, and aircraftygafe main.



1.1 Our Contributions 3.1 Kernel Based Techniques

We present a comparative evaluation of a large number ~ Kernel based techniques make use of pairwise similar-
of anomaly detection techniques on a variety of publicly ity between sequences. In the problem formulation stated
available as well as artificially generated data sets. Mdny o in Definition 1 the sequences can be of different lengths,
these are existing techniques while some are slight variant hence simple measures suchHemming Distance&annot
and/or adaptations of traditional anomaly detection tech- be used. One possible measure is the normalized length of
niques to sequence data. The specific contributions of thisljongest common subsequetatween a pair of sequences.

paper are as follows: This similarity between two sequenc8sandS;, is com-
e This evaluation facilitates understanding of the rela- Puted as:
tive strengths and weaknesses of different techniques. ILCS(S;, S;)|
Through careful experimentation, we illustrate that the nLCS(S;,8)) = —F—7" ﬁ 1)
performance of different techniques is dependent on 1931151

the nature of sequences, and the nature of anomalies irsince the value computed above is between 0 and 1,
the sequences. No one technique outperforms all oth-, ,C'S(S;, S;) can be used to represent distance between
ers. For most techniques we also identify some data g; andS; [25]. Other similarity measures can be used as
sets on which they perform very well, and some on well, for e.g., thespectrum kernel17]. We usenLC'S in

which they perform poorly. our experimental study, since it was used in [4] in detecting

o We investigate variants that have not been tried before.2nomalies in sequences and appears promising.

Under_ kernel based techr_nques, we evaluatenaar- 3.1.1 Nearest Neighbors Based (KNN)
est neighbor based technique that performs better than
a clustering based technique that was proposed for se- |n the nearest neighbor scheme (kNN), for each test se-
quences [4]. Under Markovian techniques, we propose quences, € ST, the distance to its"" nearest neighbor in
FSA-z, a variant of an existinginite State Automaton  the training sefS is computed. This distance becomes the
(FSA) based technique, which performs consistently anomaly scorel(S,) [25, 21].
superior to the original FSA based technique [19]. A key parameter in the algorithm #s. In our experi-
 We propose a novel way of generating artificial se- ments we observe that the performance of kNN technique

quence data sets to evaluate anomaly detection techd0€S not change much for< & < 8, but the performance
niques. degrades gradually for larger valueskof

e We characterize the nature of normal and anomalous3.1.2 Clustering Based (CLUSTER)
test sequences, and associate the performance of each

technique to one or more of such characteristics. This technique clusters the sequence$ imto a fixed
number of clusters;, using CLARA [13]k-medoids algo-
2 Problem Statement rithm. The test phase involves measuring the distance of
The objective of the techniques evaluated in this paperevery test sequence, < ST, with the medoid of each
can be stated as follows: cluster. The distance to the medoid of the closest cluster

becomes the anomaly sca#ésS,).

The number of clusters;, is a key parameter for this
technique. In our experiments we observed that the perfor-
mance of CLUSTER improved aswas increased from 2
All sequences consist of events that correspond to a finiteonwards, but stabilized for values greater than 32. Gener-
alphabetX. The length of sequences B1and sequences ally, if the normal data set can be well represented using
in ST might or might not be equal in length. The training clusters, CLUSTER will perform well for that value of
databaseS is assumed to contain only normal sequences,
and hence the techniques operate in a semi-supervised seB.2 Window Based Technique (t-STIDE)
ting [25]. In Section 8, we discuss how the techniques can  Window based techniques try to localize the cause of
be extended to unsupervised setting, wherean contain  anomaly in a test sequence, within one or more windows,
both normal and anomalous sequences. where a window is a fixed length subsequence of the test

. . sequence. One such technique callédeshold Sequence
3 Anomaly Detection Techniques for Se-  Time-Delay Embedding-STIDE) [8] uses a sliding win-

Definition 1 Given a set ofi training sequences§, and a
set ofm test sequence8T, find the anomaly scoré(S,,)
for each test sequenc® € ST, with respect tcs.

quences dow of fixed sizek to extractk-length windows from the
We evaluated a variety of techniques that can be groupedraining sequences ii. The count of each window occur-
into following three categories: ring in S is maintained. During testing;-length windows



are extracted from a test sequesge Each such windows;
is assigned a likelihood scof®(w;) = ff((f)), wheref (w;)
is the frequency of occurrence of windawin S, and f (x)
is the total number of length windows extracted froi®.
For the test sequend®, |S,| — k£ + 1 windows are ex-
tracted, and a likelihood score vector of lengsh| — & + 1

associated with the transition from the state correspandin
to first » symbols to the state corresponding to the last
symbols. If there is no state in the automaton correspond-
ing to the firstnh symbols, the subsequence is ignored.

FSA-z We propose a variant of FSA technique, in which
if there is no state corresponding to the firssymbols of

is obtained. This score vector can be combined in multiple 5, 4 ; subsequence, we assign a low score (e.g. 0) to that

ways to obtain4(.S,), as discussed in Section 3.4.

3.3 Markovian Technigues

subsequence, instead of ignoring it. The intuition behind
assigning a low score to non-existent states is that anoma-
lous test sequences are more likely to contain such states,

Such techniques estimate the conditional probability for {nan normal test sequences. While FSA ignores this infor-

each symbol in a test sequenggconditioned on the sym-
bols preceding it. Most of the techniques utilize gfeort
memoryproperty of sequences [22].

sequences = (s1, s2,. .. 5|5/), the conditional probability
of occurrence of a symbal is given as:

(2)

In the following, we investigate four

P(Si|5152 . Sifl) ~ P(Si|5k5k+1 NN Sifl)

for somek > 1.

This property is a
higher-order Markov condition which states that for a given

mation, we utilize it in FSA-z.

For both FSA and FSA-z techniques, the valued$ a
critical parameter. Setting to be very low (< 3) or very
high (> 10), results in poor performance. The best results
were obtained fon = 5.

3.3.2 Probabilistic Suffix Trees (PST)

A PST is a tree representation of a variable-order markov

Markovian techniques. Each one of them computes a vectorchain [24]. It estimates the probability’(s,;), of a sym-
of scores, each element of which corresponds to the conol sy, in the test sequencé,, conditioned on a variable

ditional probability of observing a symbol, as defined in

number of previously observed symbols. (variable markov

Equation 2. This score vector is then combined to obtain models). We evaluate one such technique (PST), proposed

A(S,) using techniques discussed in Section 3.4.

3.3.1 Finite State Automata Based Techniques (FSA
and FSA-z)

A fixed length Markovian technique (FSA) [19] deter-
mines the probability”(s,, ) of a symbols,;, conditioned
on a fixed number of preceding symbblsThe approach
employed by FSA usesRinite State Automatoto estimate
the conditional probabilities.

FSA extracts# + 1) sized subsequences from the train-
ing dataS using a sliding window. Each node in the au-

by [24] usingProbabilistic Suffix Treef22]. In the train-
ing phase, a PST is constructed from the sequenc8s in
The depth of a fully constructed PST is equal to the length
of longest sequence . For anomaly detection, it has
been shown that the PST can be pruned significantly with-
out affecting their performance. The pruning can be done
by limiting the maximum depth of the tree to a threshold,
L, or by applying thresholds to the empirical probability of
a node labelMinCount, or to the conditional probability
of a symbol emanating from a given node)/in.

It should be noted that if the thresholdginCount and
PMin are not applied, the PST based technique is equiv-

tomaton constructed by FSA corresponds to a unique sub—ant to FSA technique with = L andl = 1. When the

sequence of symbols that form the first symbols of such

two thresholds are applied, the events are conditioned on

n + 1 length subsequences. An edge exists between a paifhe maximum length suffix, with maximum length that

of nodes,V; andN; inthe FSA, if N; corresponds to states
Si18i2 - - - Sin @NdN; correspondsto stat8 s;s . . . SinSjn.-

At every state of the FSA two quantities are maintained.

One is the number of times tmelength subsequence corre-
sponding to the state is observedSnThe second quantity

is a vector of frequencies corresponding to number of times

exists in the PST.

For testing, the PST assigns a likelihood score to each
events,; of the test sequencg, as equal to the proba-
bility of observing symbols,; after the longest suffix of
Sq18¢2 - - - Sqi—1 that occurs in the PST.

different edges emanating from this state are observed. Us= 3 5 Sparse Markovian Technique (RIPPER)

ing these two quantities, the conditional probability for a

symbol, given preceding symbols, can be determined.

Sparse Markovian techniques are more flexible than vari-

_ During testing, the automaton is used to determine alike- gpje Markovian techniques, in the sense that they estimate
lihood score for every +1 subsequence extracted from test i conditional probability of,,; based on a subset of sym-

sequenced, which is equal to the conditional probability

1A more general formulation that determines probability smbols
conditioned on a fixed number of precedimgymbols is discussed in [19].

bols within the preceding symbols, which are not neces-
sarily contagious or immediately precedingstg. In other
words the symbols are conditioned on a sparse history.



Lee et al [16] use RIPPER classifier to build such sparselog scorefunction has the best performance across all data
models. In this approach, a sliding window is applied to the sets. Hence, results are reported for élverage log score
training dateS to obtaink length windows. The first — 1 function. If likelihood score for any window or symbol is
positions of these windows are treatedkas 1 categorical 0, we replace it with.0~° sincelog 0 is undefined. Results
attributes, and th&!" position is treated as a target class. with other combination techniques are available in ourtech
RIPPER [5] is used to learn rules that can predict&He nical report [2].
symbol given the firsk — 1 symbols. To ensure that there
is no symbol that occurs very rarely as the target class, the4 =~ Data Sets Used
training sequences are over-sampled.

For testing,k length subsequences are extracted from
each test sequencs, using a sliding window. For any

In this section we describe various public as well as the
artificially generated data sets that we used to evaluate the

subsequence, the first— 1 events are classified using the different anomaly detection techniques. To .highlight the
classifier learnt in the training phase and the prediction is strengths and weaknesses of different techniques, we also

compared to thé" symbol. RIPPER also assigns a con- generated artificial data sets using HMMs. For every data

fidence score associated with the classification, denoted a§?t’ we f'rft constructed a S:t of nolrm?l Eequencei\s, and a set
conf(sq:). Lee et al assign the likelihood score of symbol 0 anomg y sgq_uer:jces.f Za_lfrfnp e oft Enprma se(;qiugr?ces
5.1 is assigned as follows: was used as training data for different techniques. A disjoi

sample of normal sequences and a sample of anomalous se-

e For a correct classificatiom(s,;) = 1. quences were added together to form the test data. The rel-
« For a misclassification?(s,q) — 1 ative proportion of normal and anomalous sequences in the
TP T 100con f(sqi) test data determined the “difficulty level” for that data.set
3.3.4 Hidden Markov Models Based Technique We experimented with different ratios such as 1:1, 10:1 and
(HMM) 20:1 of normal and anomalous sequences and encountered

similar trends. In this paper we report results when normal

Techniques that apply HMMs for modeling sequences, and anomalous sequences were in 20:1 ratio in test data.
transform an input sequence from the symbol space to the Results on data sets with other ratios are consistentin rel-
hidden state space. The key assumption for the HMM ative terms, although most techniques perform much better
based anomaly detection technique [8] is that the normalfor the simplest data set that uses a ratio 1:1. In realigy, th
sequences can be effectively represented in the hidden statratio of normal to anomalous can be even larger than 20:1.
space, while anomalous sequences cannot be. But we were unable to try such skewed distributions due to

The training phase involves learning an HMM with limited number of normal samples available in some of the
hidden states, from the normal sequence$ iosing the data sets.
Baum Welclalgorithm.In the testing phase, the optimal hid-

den state sequence for the given input test sequgisale- Source | DataSet | [X | ¢ | [SN| | [SA] ] [S| | [ST]
termined, using th¥&/iterbi algorithm.For every pair of con- HCV 44 | 87 1 24231 50 | 1423 1050
. HOH i th imal hidden stat NAD 42 | 160 | 2685 | 50 | 1685 | 1050
secutive stategs;, s ¢i + 1), in the optimal hidden state  prawm TET | 42 | 52 | 1952 | 50 | 952 | 1050
sequence, the state transition matrix provides a likelihoo RUB 42 | 182 | 1059 | 50 | 559 | 525
score for transitioning from’ to s, ;. Thus a likelihood F;VP . gg :053 igii 15702 Zﬁ 1828
: H sna-cer

score vector of Ieng_ttﬁq| .S c_)btaln(_a_d. UNM snd-unm | 53 | 839 | 2030 | 130 | 1030 | 1050
The number Qf hidden statess a cnhca} parameter for bsmweekil 67 | 149 | 1000 | 800 | 10 | 210
HMM. We experimented with values ranging from 2|g. DARPA | bsmweek2| 73 | 141 | 2000 | 1000 | 113 | 1050
Our experiments reveal that the performance of HMM does bsmweek3| 78 | 143 | 2000 | 1000 | 67 | 1050

not vary significantly for different values af. Here the

results are presented for= 4. Table 3: Public data sets used for experimental evaluation.

[ — Average Length of SequenceY — Normal DataS#
3.4 Combining Scores — Anomaly Data$ — Training DataST — Test Data.

The window based and Markovian techniques discussed

above generate a likelihood score vector for a test sequence Table 3 summarizes the various statistics of the data sets
Sq. A combination function is then applied to obtain a used in our experiments. All data sets are available from
single anomaly scorel(S;). A(S;) can be computed in  our web site (Link not provided to maintain double blind
multiple ways, such as average score [15], minimum score,review status). The distribution of the symbols for normal
maximum score, average log score [24], using a thresholdand anomalous sequences is illustrated in Figures 1(3),1(b
[19, 8]. We experimented with various combination func- (RVP), 1(c),1(d) (snd-unm), and 1(e),1(f), (bsm-week2).
tions for different techniques, and found that tnerage The distribution of symbols in snd-unm data is different for



(a) RVP Normal (b) RVP Anomalous (c) snd-cert Normal (d) snd-cert Anomalous  (€) bsm-w2 Normal (f) bsm-w2 Anomalous

Figure 1: Distribution of Symbols in Training Data Sets offBient Types.

normal and anomaly data, while the difference is not signif- normal from all days of the week. The anomaly data set
icant in RVP and bsm-week2 data. We will explain how the was constructed in a similar fashion. The data is similar to
normal and anomalous sequences were obtained for eackthe system call data described above with similar (though

type of data set in the next subsections. larger) alphabet.
_ The protein data sets and intrusion detection data sets
4.1 Protein Data Sets are quite distinct in terms of the nature of anomalies. The

The first set of public data sets were obtained from @nomalous sequences in a protein data set belong to a dif-
PFAM database (Release 17.0) [3] containing sequence§ere”t family than the normal sequences, and hence can be
belonging to 7868 protein families. Sequences belongingthought of as being generated by a very different genera-
to one family are structurally different from sequences be- tive mechanism. This is also supported by the difference in
longing to another family. We choose five families, viz., the distributions of symbols for normal and anomalous se-
HCV, NAD, TET, RVP, RUB. For each family we construct duences for RVP data as shown in Figures 1(a) and 1(b).
a normal data set by choosing a sample from the set of se-The anomalous sequences in the intrusion detection data
quences belonging to that family. We then sample 50 se-Sets correspond to scenario when the normal operation of
quences from other four families to construct an anomaly @ System is disrupted for a short span. Thus the anomalous
data set. Similar data was used by [24] to evaluate the PSTS€guences are expected to appear like normal sequences for
technique. The difference was that the authors constracted Most of the span of the sequence, but deviate in very few
test data for each pair of protein families such that sampleslocations of the sequence. Figures 1(e) and 1(f) shows how
from one family were used as normal and samples from thethe distributions of symbols for normal and anomalous se-
other were used as test. The PST results on PFAM data set§uences in bsm-week2 data set, are almost identical. One
reported in this paper appear to be worse than those reporteould expect the UNM data sets (snd-unm and snd-cert) to

in [24]. have similar pattern as for the DARPA data. But as shown
in Figures 1(c) and 1(d), the distributions are more similar
4.2 Intrusion Detection Data Sets to the protein data sets.

The second set of public data sets were collected from4_3 Artificial Data Sets
two repositories of benchmark data generated for evalua-
tion of intrusion detection algorithms. One repository was
generated at University of New Mexito The normal se-
guences consisted of sequence of system calls generated

As mentioned in the previous section, the public data
sets reveal two types of anomalous sequences, one which
fre arguably generated from a different generative mecha-

an operating system during the normal operation of a com-hism than the normal sequences, and the other which result
puter program, such as sendmail, ftp, Ipr etc. The anoma-fom a normal sequence deviating for a short span from its

lous sequences consisted of sequence of system calls gene@(pec_ted normal behaylor. Our hypothesis IS that different
ated when the program is run in an abnormal mode, Corre_technlques might be suited to detect anomalies of one type

sponding to the operation of a hacked computer. We report®” @nother, or both. To confirm our hypothesis we gener-
results on two data sets. viend-unrandsnd-cert ate artificial sequences from an HMM based data genera-

The other intrusion detection data repository wasthe tor. This data generator _allows_us to generat_e _normal and
sic Security ModuléBSM) audit data, collected from a vic- an(\)/\r/nalou(sj sequen(_:ezvl\\;:lt\;l deswr?d chgr?:qterlst;:s. del
tim Solaris machine, in the DARPA Lincoln Labs 1998 net- e luse a g”enerlc I as sdown in r:gure o n;]o €
work simulation data sets [18]. The repository contains la- horma aszwr:e as anoma 0qu ata. ST' e HSMM sdown
beled training and testing DARPA data for multiple weeks mSFlgure S as two sets of statepy, Sz,... e} an
collected on a single machine. For each week we con- 157: 98, -+ S12}.

structed the normal data set using the sequences labeled as W|th|n each set, _the_ transitions corr(_aspondlng to_t_he
solid arrows shown in Figure 2 were assigned a transition

2http://mww.cs.unm.ede/immsec/systemcalls.htm probability of (L —503), while other transitions were assigned




pare the performance of different techniques we adopt the
following evaluation strategy:

1. Rank the test sequences in decreasing order based on
the anomaly scores.

2. Count the number of true anomalies in the topor-
tion of the sorted test sequences, where= dq,
0 < 0 < 1, andgq is the number of true anomalies
Figure 2: HMM used to generate artificial data. in ST. Let there be true anomalous sequences in top
p ranked sequences.

transition probability3. No transition is possible between 3. Accuracy of the technique;—-: L

o
states belonging to different sets. The only exception are ) ) i :
S,Ss for which the transition probability is\, and S7.5; We experimented with different values 6fand reported
for which the transition probability i¢ — \. The transi- consistent findings. We present results §oe= 1.0 in this
tion probabilitiesS,.S; and S;Ss are adjusted accordingly —PaPer: _ o _
so that the sum of transition probabilities for each stafe is Though computational complexity is an important metric

The observation alphabet is of size 6. Each state emits¥Nen evaluating anomaly detection techniques in real ap-
one alphabet with a high probability ¢ 5«), and all other plication domalns, we do qot pre_sent a detalle_d comparison
alphabets with a low probabilityr). Figure 2 depicts the of computational complexity of different techniques due to

most likely alphabet for each state. space limitations. Briefly, since kernel based techniques
The initial probability vectorr of the HMM is con- involve computation of pairwise similarity, their compu-
structed such that either, = m = ... = 5 = 1 and tational complexity can be very high. The computation

T7 =Ty = ... = T = 0; OF Vice-versa. of similarity measure |ts_elf is a complex operation Wh|ch
Normal sequences are generated by setlirig a low can become a computational bottleneck for such techniques.

value andr to be such that the first 6 states have initial prob- L€arning the model in HMM as well as RIPPER technique
ability set to% and rest 0. If\ = 3 = a = 0, the normal is expensive, though not as much as the computation of

sequences will consist of the subsequenge@azasasas pairwise similarity for kernel based techniques. The PST
getting repeated multiple times. By increasingr 3 or o technique is the most economical in terms of computational
anomalies can be induced in the normal sequences. cost due to the pruning involved. t-STIDE, FSA, and FSA-z

This generic HMM can be tuned to generate two type of '€ relatively more expensive than PST though not very sig-
anomalous sequences. For the first type of anomalous Se[nflcarjltly. More detailed comparisons are provided in our
quences) is set to a high value andto be such that the last  téchnical report [2].

6 states have initial probability set goand rest 0. The re-
sulting HMM is directly opposite to the HMM constructed 6 Nature of Normal and Anomalous Se-
for generating normal sequences. Hence the anomalous se- (UENCES

quences generated by this HMM are completely different 1o ynderstand the performance of different anomaly de-
from the normal sequences. tection technigues on a given test data set, we first need to

To generate second type of anomalous sequences, th@nderstand what differentiates normal and anomalous se-
HMM used to generate the normal sequence is used, withquences in the test data set.

the only difference thak is increased to a higher value than ~ one distinction between normal and anomalous se-

0. Thus the anomalous sequences generated by this HMMyyences is that normal test sequences are expected to be
will be similar to the normal sequences except that there more similar (using a certain similarity measure) to train-
will be short spans when the symbols are generated by thang sequences, than anomalous test sequences. If the differ
second set of states. ence in similarity is not large, this characteristic willtre

By varying A, 3, anda, we generated several evaluation gple to accurately distinguish between normal and anoma-
data sets (with two different types of anomalous sequences)|oys sequences.

We will present the results of our experiments on these arti-  another characteristic of a test sequence is the relative

ficial data sets in Section 7. frequency of short patterns (subsequences) in the test se-
. guence with respect to the training sequences. Let us clas-
5 Evaluation Methodology sify a short pattern occurring in a test sequenceeeif
The techniques investigated in this paper assign anit occurs in training sequences andseerif it does not oc-
anomaly score to each test sequefigee ST. To com- cur in training sequences. Tiseenpatterns can be further



Kernel Markovian on UNM data sets is similar to PFAM data sets. A rea-
cls | knn| tstd| fsa | fsaz] pst| rip | hmn] Avg . i i
hov| 054 0.89 0.90 0.89 097 0.74 0.5 0.1] 0.69 son for this could be that the nature of anomalies in UNM
nad| 0.4 0.64 0.74 0.66 0.72 0.10 0.2d 0.0§| 0.45 i iag i
pia e | 084 08 05a 0ad 05d 064 03d 02dl oed data sets are more _S|m|lar t_o the qnomahes in PFAM data
wp | 084 0.9q 0.99 0.99 0.9 0.5d 0.64 0.1d| 0.72 sets. The similarity in the distribution of symbols for nor-
2:51 8-;2 g-gj 8-22 8-22 8-23 8-52 8-;5 8-88 g-gg mal and anomalous sequences for PFAM and UNM data
UNMI snd 0.04 0.94 0.64 o.8d 0.8d 0.1d 0.7d 0.0d| 0.64 sets (See Figure 1), supports this hypothesis. CLUSTER
bwl} 0.24-0.29 0.2 0.49 0.5(¢ 0.04 0.2¢ 0.0g} 0.21 and kNN show good performance for PFAM and UNM data
bw2| 0.3 0.52 0.3 0.52 0.5 0.10 0.1 0.02| 0.33
DRPA bw3 054 0.49 0.6d 0.64 0.6 0.34 0.5d 0.2d| 0.49 sets but perform poorly on DARPA data sets. FSA and
Avg | 064 0.74 069 0./ 0.79 0.3] 0.4 0.07 FSA-z show consistently good performance for all public

data sets. t-STIDE performs well for PFAM data sets but
its performance degrades for both UNM and DARPA data
sets. While PST performs average to poor for all data sets,
RIPPER performs well for UNM data sets.

Table 4: Results for public data sets.

classified aseen-frequentif they occur frequently in the
trammg sequences, arsdaen—_rare if they occur rarely in 72 Results on Artificial Data Sets

the training sequences. A given test sequence can contain : .

all three type of patterns, in varying proportions. The per- Table 5 summarizes the results on 6 artificial data sets.

formance of a window based or a Markovian technique will The normal sequences in data gétwere generated with
depend on following factors: A = 0.01,8 = 0.01,a = 0.01. The anomalous sequences

were generated using the first setting as discussed in Sec-
1. What is the proportion afeen-frequenseen-rareand tion 4.3, such that the sequences were primarily generated
unseerpatterns for normal sequences, and for anoma- from the second set of states. For data sisd6, the
lous sequences? HMM used to generate normal sequences was tuned with
8 = 0.01,a = 0.01. The value of\ was increased from
2. What is the relative score assigned by the technique t00.002 to 0.01 in increments 0f0.002. Thus normal se-
the three type of patterns? guences ini2 contain least number of anomalous patterns
while those ind6 contain the largest number of anomalous
We will refer back to this characteristic when analyzing the patterns. The anomalous sequences were generated using

performance of different techniques in Section 7.4. the second setting in which is set to 0.1. One can ob-
) serve in Table 5 that the data sets become progressively
7 Experimental Results challenging fromd2 to d6, as the performance of most of

The experiments were conducted on a variety of data setgN® techniques deteriorates asncreases. The anomalous
discussed in Section 4. The various parameter settings assg®duences are very different than normaldoy since they
ciated with each technique were explored. The results pre-2r€ generated by a completely opposite generative mecha-
sented here are for the parameter setting which gave best r?'SmM, and hence all technigues are able to detect exactly all
sults across all data sets, for each technique. The parametén0malous sequences.

settings for the reported results are : CLUSTERH( 32), From Table 5, we observe that PST is the most stable
KNN (k = 4), FSA,FSA-z o = 5,1 = 1), tSTIDE (k = 6), technique across the artificial data sets, while the deterio

PST (L = 6, Pin = 0.01), RIPPER { = 6). For public ~ tionis most pronounced for FSA and FSA-z. Both kNN and
data sets, HMM was run with = 4, while for artificial CLUSTER also get negatively impacted as thicreases
data sets, HMM was run with = 12. For window based ~ Putthe trend is gradual than for FSA-z.

and Markovian techniques, the techniques were evaluated

. . . . K . K Kernel Markovian
using different combination methods discussed in Section s | knn| tstd| fsa | fsaz pst| rip | hmr] Avg
3.4.The results reported here are for #werage log score di | 1.09 1.00 1.00 1.0¢ 1.09 1.09 1.04 1.00| 1.0¢
. . . d2 0.80 0.8§ 0.82 0.84 0.92 0.84 0.7 0.50| 0.84
combination function. d3 | 0.74 0.7d 0.64 0.50 0.6 0.82 0.64 0.34| 0.63

d4 | 0.74 0.7 0.64 0.52 0.52 0.7 0.6 0.42| 0.63

. ds | 0.59 0.6q 0.48 0.24 0.34 0.6d 0.57 0.14| 0.4
7.1 Results on Public Data Sets d6 | 0.64 0.6 050 0.24 0.3d 0.6d 0.44 0.64| 0.53

Avg| 0.7 0.7§ 0.6 0.57 0.62 0.8(0 0.67 0.5

Table 4 summarizes the results on 10 public data sets.
Overall one can observe that the performance of techniques Table 5: Results for artificial data sets.
in general is better for PFAM data sets and on UNM data
sets, while the DARPA data sets are more challenging.
Though the UNM and DARPA data sets are both intrusion 7-3 Results on Altered RVP Data Set
detection data sets, and hence are expected to be similar Third set of experiments was conducted on the RVP data
in nature, the results in Table 4 show that the performanceset from PFAM repository. A test data set was constructed



100 : : : : , ——— e lous sequence is different from the normal sequence for a

%l e short span only, the LC'S measure does not effectively

ol . capture this difference. In Table 4, CLUSTER performs
/ well for protein data sets, as well as on UNM data sets,

°r /“'\/ since the anomalous sequences are very different from the

60 normal sequences. But the performance becomes worse for

the DARPA data sets, such as bwl, where the anomalous
sequences are minor deviations of the normal sequences.
Results on artificial data sets (Table 5 and Figure 3) also in-

50 |

Accuracy (%)

40 -

b &

‘ CLUSTER —— dicate similar results.
20 I-ST'—!IgE B
ol FSAZ e FSA and FSA-z The original FSA technique does not
v e e o RBPERL assign any score when a unreachable state is encountered
s 4 s & 7+ & s 1 inthe test sequence, while our FSA-z technique assigns a
Number of Anomalous Symbols Inserted (k) score of 0 in such cases. This generally improves the per-
Figure 3: Results for altered RVP data sets formance of FSA-z. The reason for this improvementis that

often, mostly in anomalous sequences, there axiseen

patterns (Refer to our discussion in Section 6). While FSA
by sampling 800 most normal sequences not present inignores such patterns, FSA-z assigns a score of 0. Such pat-
training data. Anomalies were injected in 50 of the test se- terns can provide useful information in differentiating be
guences by randomly replacikgymbols in each sequence tween normal and anomalous sequences, and hence FSA-z
with the least frequent symbol in the data set. The objec- performs better than FSA. In fact, FSA-z performs well if
tive of this experiment was to construct a data set in which the anomalous test sequences contain relatively higher num
the anomalous sequences are minor deviations from normaber ofunseerpatterns when compared to anomalous normal
sequences, as observed in real settings such as intrusion déequences. This behavior is evident in Figure 3, where in-
tection. We tested data sets with different values asing ~ sertion of even a few unseen symbols in the anomalous se-
CLUSTER, t-STIDE, FSA, FSA-z, PST, and RIPPER. Fig- quences results in multiplenseerpatterns, and are easily
ure 3 shows the performance of the different techniques fordetected by FSA-z, while FSA does not perform as well.

different values of from 1 to 10. We observe that FSA-z A drawback of FSA and FSA-z techniques is that they
performs remarkably well for these values laf CLUS- o {0 assign high likelihood scoresgeen-rarepatterns.

TER, t-STIDE, FSA, PST, and RIPPER exhibit moderate o example, let us assume that the subsequence AAAAAB
performance, though for values Iafclose_r to 10, RIPPER occurs just once in training datd, A 5+1 FSA will learn
performs better than the other 4 techniques. For 10, this pattern and assign a probability of 1 if symbol B fol-

all techniques show better than 90% accuracy because th¢y s the subsequence AAAAA in a test sequence. Thus

anomalous sequences become very distinct from the nor+¢ ihe anomalous test sequences are such that they contain

mal sequences, and hence all techniques perform comparay anyseen-rareatterns, such anomalous sequences will be
bly well. Note that the average length of sequences for RvP assigned a low anomaly score. The performance of FSA and
data set is close to 90. FSA-z on artificial data set in Table 5 illustrates this point

] o ) For data setsl2—d6, the only difference between normal
7.4 Observations for Individual Techniques and anomalous sequences is that anomalous sequences con-
kNN  The kNN technique performs better than CLUS- tain higher number oéeen-rarepatterns when compared
TER for most of the data sets. This is expected, sinceto normal sequences. But since FSA and FSA-z assign a
CLUSTER is optimized for clustering and not for anomaly high likelihood scores to such patterns, they fail to detect
detection. The kNN based technique is not very sensitive tothe anomalous sequences. This is the reason why perfor-
the parametek for lower values oft, 1 < k < 4, but the mance of FSA as well as FSA-z deteriorates sharply from
performance deteriorates fbiarger than 4. d2 to d6.

CLUSTER - Performance of CLUSTER technique de- t-STIDE  The t-STIDE technique has the best perfor-
pends on the similarity measure. The similarity measure mance for most of the PFAM data sets but is relatively
should be such that it assigns higher similarity betweenworse for the intrusion detection data sets. A strength of t-
a pair of normal sequences, and lower similarity between STIDE is that unlike FSA and FSA-z, t-STIDE does not get
a normal and anomalous sequence. If the anomalous seaffected by the presence séen-rarewindows in anoma-
guence is very different from the normal sequence('S lous test sequences. This can be observed in the artificial
will assign a low similarity to that pair. But if the anoma- data sets, where the performance of t-STIDE does not dete-



riorate as sharply as for FSA-z ads increased (fromd2 — of PST remains more stable than any other technique.

o). .

The above mentioned strength of t-STIDE can also haveRIP.PER gotn RIP.PER a.n.d P.‘ST techmque; are more
a negative impact on its performance. t-STIDE learns only flexible FSA'Z n con_dltlonlng the propablhty of an
frequently occurring patterns in the training data, and ig- ;\;grgEb;stedhor_] Its prlecedlngthsyrggolsl_.k -Il—.r;]'s sduggests that
nores rarely occurring ones. Thus if a normal sequence is . Semoothensine fikelinood scores
tested against t-STIDE, and it containseen-rarepattern, Of UgFras Wou asseen-rarepatterns in test sequences.
it will be assigned a low likelihood score by t-STIDE, while -rl;ir;)?trsezrlziiyeelyo?)?)?)rrvset?fitrﬁgﬁg:lI(i:nd(?:)arlnspe;fi,saptzEFRSix-
FSA and FSA-z will assign a higher score in such a sce- ’
nario 9 9 and FSA-z. RIPPER performs better than PST on 8 out of

' 10 data sets. Thus choosing a sparse history is more ef-

In the previous evaluation of tSTIDE [8] with other fective than choosing a variable length suffix. The reason
techniques, t-STIDE was shown to be comparable with RII:)_for this is that the smoothing done by RIPPER is less than

PER on UNM data sets. Our results are consistent with their . > o
evaluation. But on PFAM data sets we observe that t-STIDEsr.nOOthIng done_ .by PST (since the R.IPPER anSS|f|er ap-
plies more specific and longer rules first, and is hence bi-

f better than RIPPER. . .
periorms bhetier than ased towards using more symbols of the history), and hence

In the original t-STIDE technique [8] the authors use a : 2
threshold based combination function, in which the number RIPPER is mp_re_ similar to FS.A and FSA-z than PST. The
esults on artificial data sets in Table 5 also show that the

of windows in the test sequence whose scores are equal td Ny . , .
or below a threshold, are counted. Our experiments Showdeterloratlon Of RIPPER'’s performance frath—d6 is less
ronounced than for FSA-z while more pronounced than

that using the average log values of the scores perform ST
equally well without relying on the choice of a threshold. :

The STIDE technique [12] is a simpler variant of t-STIDE HMM  The HMM technique performs very poorly on all
in which the threshold is set to 0. In [8] the authors have public data sets. The reasons for the poor performance of
shown that t-STIDE is better than STIDE, hence we evalu- HMM are twofold. The first reason is that HMM tech-
ate the technique used in t-STIDE. nique makes an assumption that the normal sequences can
be represented with hidden states. Often, this assumption
PST We observe that PST performs very poorly on most '

N P very poorly does not hold true, and hence the HMM model learnt from

of the public data sets. It should be noted that in the paperth traini i it th |
that used PST for anomaly detection, the evaluation done € lraining sequences cannot emit the normal sequences

on protein data sets was different than our evaluation. WeW'th high confidence. Thus all test sequences (normal and

provide a more unbiased evaluation which reveals that PSTanomanus) are assigned a low probgbmty Score. The Sec-
does not perform that well on similar protein data sets. ond reason for the poor performance is the manner in which

PST assigns moderately high likelihood scoresden- a score is assigned to a test sequence. The test sequence is
rare patterns observed in a test sequence, since it compute rst cpnvertt_ed to a hidden state sequence, and tiies a
the probability of the last event in the pattern conditioned Q@ 2pplied to the t_ransform_ed sequence. We have ob-
on a suffix of the preceding symbols in the pattern. Thus served from our experiment using FSA thal & 1 FSA
the score assigned 8een-rarepatterns by PST are lower gaps not perform well .f(.)r.anomaly detection. The perfor-
than the score assigned by FSA-z, but higher than the Scor(%ngnce of HMM on artificial d.at.a sets (Table 5 illustrates
assigned by t-STIDE. Similarly, PST assigns a moderately his argument. Since the training data was actl_JaIIy gen-
high score folunseerpatterns occurring in test sequences. era_lted bY al2 St{f‘te HMM and the HMM technlque was
The latter characteristic of PST can become the WeaknesérameoI withg = 12; thus the HMM model effectively cap-

of PST in a way that the anomaly signal due to tinseen tures the normal sequences. The results of HMM for artifi-
as well aseen-raratterns ismoothedy the PST. Ifin a cial data sets are therefore better than for public data sets

data set the normal sequences contain a significant numbeklJUt still slightly worse than other techniques becauseef th
oor performance of the+ 1 FSA.

of seen-rargatterns, and the anomalous sequences contairf®

unseerpatterns, they might still not be distinguishable. This .

behavirgr is observgd fogr many public datagsets in Table 4,8 Conclusions and Future Work

as well as on the modified RVP data set in Figure 3. Our experimental evaluation provided us with valuable
The fact that the scores assignedéen-rargatterns by  insights into strengths and weaknesses of different anomal

PST are lower than the score assigned by FSA-z, can alsaletection techniques. None of the techniques was found to

become strength of PST because it does not get affected bype consistently superior to all other techniques, indizati

the presence afeen-rargatterns in normal test sequences, that the performance of a technique depends on the nature

unlike FSA-z. This characteristic is observed with the-arti of the sequence data set. The use of artificial data generator

ficial data sets in Table 5. Asincreases, the performance allowed us to arrive at conclusions that were not evident



from the results on public data sets. [5]

A significant result of this study is that several tech-
nigues have been shown to be quite effective in applica-
tion domains for which they were not originally intended
for. Techniques such as t-STIDE and FSA ,which were [
originally evaluated on system call intrusion detectiotagda
show promising results on protein data sets. Interestingly 7]
t-STIDE performs relatively poorly on system call intrusio
detection data sets.

Results on the public data sets (Table 4) reveal that FSA- [g]
z and FSA, are the most consistent techniques while PST
and RIPPER generally perform poorly. But the results on
artificial data sets (Table 5) identify scenarios where éte |
ter two techniques might be better suited than the former [9]
two.

Kernel based techniques are found to perform well for
data sets in which the anomalous sequences are relatively[lo]
different from the normal sequences; but perform poorly
when the different between the two is small. This is due to
the nature of the normalized LCS similarity measure used 11
in the kernel based techniques. Future work should inves-
tigate other similarity measures that are able to captuge th
difference between sequences that are minor deviations of{12]
each other. Our experiments show that KNN technique is
somewhat better suited than CLUSTER for anomaly detec-
tion. (13]

Consistent with the observations of other researchers [8],
we found the HMM technique to perform poorly. When
the normal sequences were generated using an HMM, the
performance improves significantly. The hidden state se-
guences, obtained as a intermediate transformation of data[15]
can actually be used as input data to any other technique
discussed here. The performance of such an approach will
be investigated as a future direction of research. [16]

[14]
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